Các Bài Toán Về Giá Trị Tuyệt Đối Lớp 7 Có Đáp Án

      84

Các dạng bài tập toán có chứa dấu giá trị tuyệt đối thường gây bối rối cho nhiều em học sinh vì thường phải chia điều kiện, kết luận nghiệm phải đối chiếu điều kiện khi khử (phá) dấu trị tuyệt đối.

Bạn đang xem: Các bài toán về giá trị tuyệt đối lớp 7 có đáp án


Vậy làm sao để giải các dạng bài tập giá trị tuyệt đối chính xác? Chắc chắn chúng ta phải rèn kỹ năng giải toán bằng cách làm thật nhiều bài tập dạng này. Bài viết này chúng ta cùng ôn lại các dạng toán giá trị tuyệt đối ở chương trình toán lớp 7.

I. Kiến thức về Giá trị tuyệt đối cần nhớ

• Nếu 

*

• Nếu

*
b)
*
c)
*

* Lời giải:

a)

*
b)
*
c)
*

* Ví dụ 2 (bài 17 trang 15 SGK Toán 7 tập 1). Tìm x biết:

a)

*
b)
*
c)
*
d)
*

* Lời giải:

a)

*

b)

*

c)

*

d)

*

* Ví dụ 3: Tính giá trị của biểu thức

a)

*
 với x = -2/3

b) 

*
 với x =1/2; y =-3;

* Lời giải:

a) Ta có:

*

 

*
 
*

b) Ta có:

*
*

* Ví dụ 4: Rút gọn biểu thức sau với 3,5≤x≤4,5

a) A = |x - 3,5| + |4,5 - x|

b) B = |-x + 3,5| + |x - 4,5|

* Lời giải:

a) Vì x≥3,5 ⇒ x - 3,5 ≥ 0 nên |x - 3,5| = x - 3,5

 vì x≤4,5 ⇒ 4,5 - x ≥ 0 nên |4,5 - x| = 4,5 - x;

 ⇒ A = (x - 3,5) + (4,5 - x) = 1

b) Vì x≥3,5 ⇒ - x + 3,5 ≤ 0 nên |-x + 3,5| = - (-x + 3,5) = x - 3,5.

 vì x≤4,5 ⇒ x - 4,5 ≤ 0 nên |x - 4,5| = -(x - 4,5) = 4,5 - x.

⇒ B = (x - 3,5) + (4,5 - x) = 1.

° Dạng 2: Tìm giá trị của x trong bài toán dạng |A(x)| = k

* Phương pháp giải:

• Để tìm x trong bài toán dạng |A(x)| = k, (trong đó A(x) là biểu thức chứa x, k là 1 số cho trước) ta làm như sau:

- Nếu k

- Nếu k = 0 thì ta có |A(x)| = 0 ⇒ A(x) = 0

- Nếu k > 0 thì ta có: 

*

* Ví dụ 1: Tìm x biết:

a) b)

* Lời giải:

a) Vì 

*
 nên không có giá trị nào của x thỏa 

b)  

 

*

*
 hoặc 
*

• TH1:

*

• TH2: 

*

- Kết luận: Có 2 giá trị của x thỏa điều kiện là x = 1 hoặc x = 3/4.

Xem thêm: Nguyễn Thanh Nghị Nguyễn Tấn Dũng, Thành Viên Chính Phủ Qua Các Thời Kỳ

* Ví dụ 2 (Bài 25 trang 16 SGK Toán 7 Tập 1): Tìm x biết:

a) b)

* Lời giải:

a)

 

*

- Vậy có 2 giá trị x thỏa yêu cầu bài toán là x = 4 hoặc x = -0,6.

b) 

*
 

 

*
 hoặc
*

• Nếu 

*

• Nếu 

*

- Kết luận: Vậy x = -5/12 hoặc x = -13/12 thỏa.

° Dạng 3: Tìm giá trị của x trong bài toán dạng |A(x)| = |B(x)|

* Phương pháp giải:

• Để tìm x trong bài toán dạng dạng |A(x)| = |B(x)|, (trong đó A(x) và B(x)là biểu thức chứa x) ta vận dụng tính chất sau:

 

*
 tức là: 
*

* Ví dụ: Tìm x biết:

a)|5x - 4| = |x + 4|

b)|7x - 1| - |5x + 1| = 0

* Lời giải:

a)|5x - 4| = |x + 4|

 

*

- Vậy x = 2 và x = 0 thỏa điều kiện bài toán

b)|7x - 1| - |5x + 1| = 0 ⇔ |7x - 1| = |5x + 1|

 

*

- Vậy x = 1 và x = 0 thỏa điều kiện bài toán.

° Dạng 4: Tìm giá trị của x trong bài toán dạng |A(x)| = B(x)

* Phương pháp giải:

• Để tìm x trong bài toán dạng |A(x)| = B(x) (*), (trong đó A(x) và B(x)là biểu thức chứa x) ta thực hiện 1 trong 2 cách sau:

* Cách giải 1:

1- Điều kiện B(x)≥0

2- Khi đó (*) trở thành 

*

3- Tìm x rồi đối chiếu x với điều kiện B(x)≥0 rồi kết luận.

* Cách giải 2: Chia khoảng xét điều kiện để khử (bỏ) trị tuyệt đối

- TH1: Nếu A(x)≥0 thì (*) trở thành A(x) = B(x) (sau khi tìm được x đối chiếu x với điều kiện A(x)≥0)

- TH2: Nếu A(x)* Ví dụ: Tìm x biết:

a)|x - 3| = 5 - 2x b)|5 - x| = 3x + 1

° Lời giải:

a)|x - 3| = 5 - 2x (*)

* Giải theo cách 1:

- Điều kiện

*
 ta có:

 (*) trở thành 

*

 

*

- Đối chiếu với điều kiện x≤5/2 thì chỉ có x=2 thỏa, x = 8/3 loại

- Kết luận: Vậy x = 2 là giá trị cần tìm.

* Giải theo cách 2:

¤ TH1: (x - 3) ≥ 0 ⇒ x ≥ 3. Ta có:

 (*) trở thành (x - 3) = 5 - 2x ⇒ 3x = 8 ⇒ x = 8/3

 Đối chiếu điều kiện ta thấy x = 8/3 III. Một số bài tập về giá trị tuyệt đối

- Vận dụng phương pháp giải các dạng toán trị tuyệt đối ở trên các em hãy làm các bài tập sau:

* Bài 1: Rút gọn biểu thức với x * Bài 2: Rút gọn biểu thức sau

a) A = |x - 2,2| + |x - 1,8|

b) B = |-x - 1,4| + |x - 2,6|

* Bài 3: Tìm x, biết:

a) 

*

b)

*

* Bài 4: Tìm x, biết:

a)

*

b)

*

* Bài 5: Tìm x, biết:

a) |4 + 2x| + 4x = 0

b) |3x - 7| - 1 = 2x

Đến đây có lẽ các em đã nắm được cơ bản tính chất của trị tuyệt đối cách vận dụng giải một số bài toán tìm x trong bài toán có dấu trị tuyệt đối.

Thực tế còn khá nhiều bài toán dựa vào tính không âm của trị tuyệt đối như tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức và các bài toán hỗn hợp khác mà có thể yome.vn sẽ cập nhật sau.